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Abstract. A probabilistic automata network model for the spread of an infectious disease 
in a population of moving individuals is studied. The local rule consists of two SubNles. 
The first one, applied synchronously, models infection, birth and death processes. It is a 
probabilistic cellular automaton rule. The second, applied sequentially, describes the motion 
of the individuals. The model conwins six parameters: the probabilities p for a susceptible 
to become infected by contact with an infective: the respective birth rates b, and bi %f the 
susceptibles from either a susceptible or an infective parent; the respective death rates d, and dj 
of susceptibles h d  infectives; and a panmeter m characterizing the motion of the individuals. 
The model h B  three fixed points. The first is trivial, it describes a stationay state with no living 
individuals. The second corresponds to P disease-free state with no infectives. The third and 
last one charmerives an endemic state with nun-zero densities of susceptibles and infectives. 
Mareover. the model may exhibit oscillatory behaviour of the susceptible and infective densities 
as functions of time through a Hopf-type bifurcation. The influence of the different parameters 
on the stability of all these states is studied with B pwicular emph&s on the influence of motion 
which has been found to be a stabilizjng factor of the cyclic behaviour. 

1. Introduction 

This paper discusses a general epidemic model which takes into account the infection of 
susceptibles by contact with infectives, birth of susceptibles from either a susceptible or 
infective parent, death of susceptibles and infectives and motion of the individuals. 

Our model is formulated in terms of automata networks (Goles and Maainez 1990) 
which describe the local character of the infection process more correctly. An automata 
network is a graph with a discrete variable at each vertex which evolves in discrete time 
steps according to a definite rule involving the values of neighbouring vertex variables. The 
vertex variables may be updated sequentially or synchronously. 

Automata networks are discrete dynamical systems,.which may be defined moreformally 
as follows. 

Let G = ( V ,  E )  be a graph, where V is a set of vertices and E a set of edges. Each 
edge~joins two vertices that are not necessarily distinct. An automata network,. defined 
on V ,  is a triple (G, &, (fili E V I ) ,  where G is a graph on V ,  Q a finite set of states 
and f, : QIu ; '  + & a mapping, called he local transition rule associated with vertex i. 
Vi .= ( j  E V l [ j ,  i )  E E )  is the neighbourhood of i, i.e. the set of vertices connected to i, 
and IUil denotes the number of vertices belonging to U(. The graph G is assumed to be 
locally finite, i.e. for all i E V ,  IUil .= 00. 

In our model the set V is the two-dimensional torus 3, where 2' is the set of integers 
modulo L. A vertex is either empty or occupied by either a susceptible, i.e. an individual 

0305-4470/94/051585+13$19.50 @ 1994 IOP Publishing Ltd 1585 



1586 N Boccara et a1 

who is not infected but who is capable of contracting the disease and becoming infective; 
or an infective, i.e. an individual who is capable of transmitting the disease to susceptibles. 

The evolution of these two populations is governed by the following rules: 
(i) Susceptibles become infective by contact, i.e. a susceptible may become infective 

with a probability p if, and only if, it is in the neighbourhood of an infective. This hypothesis 
neglects latent periods, an infected susceptible becomes immediately infective. 

(ii) Susceptibles and infectives may die with respective probabilities ds and di. In this 
case, they are removed from the lattice and the site they occupied becomes vacant. This 
assumption states that death is equally likely among each group of individuals, which means, 
in particular, that these two parameters are supposed to be independent of age and the length 
of time an individual has been infective. 

(iii) Susceptibles and infectives may give birth at a neighbouring empty site to a 
susceptible with respective probabilities bs and bj. That is, we assume that all newborns are 
susceptibles and have only one parent. 

(iv) The time unit is the time step.. During one time step, the preceding rules are applied 
after the individuals have moved on the lattice according to the following specific rule. 

(v) An individual selected at random may move to a vertex also chosen at random. 
If the chosen~ vertex is empty the individual will move, otherwise the individual will not 
move. The set in which the vertex is randomly chosen depends on the range of the move. 
To illustrate the importance of this range, we considered two extreme cases. The chosen 
vertex may be either one of the four nearest neighbours or be any vertex of the graph. 
These two particular types of move will be called, respectively, short- and long-range 
moves. If N is the total number of sites of 21, and c the total densify of individuals, 
mcN individuals, where m is a real positive number, are sequentially selected at random 
to perform a move. This sequential process allows some individuals to move more than 
others. Since an individual may only move to an empty site, the parameter m represents 
the average number of tentative moves per individual during a unit of time. 

This model is an automata network with a mixed transition rule. That is, at each 
time step, the evolution results from the application of two subrules. The first subrule 
models infection, birth and death processes. It is a three-state cellular automaton rule 
applied synchronously. The second one specifies the motion of the individuals. It is applied 
sequentially. Both subrules are probabilistic and translation invariant, i.e. they do not depend 
upon the vertex i. 

2. Mean-field approximation 

The mean-field approximation ignores space dependence and neglects correlations. It 
assumes that the probability that either a susceptible or an infective occupies a lattice site 
is proportional to the density of the corresponding population. In lattice models with local 
interactions, quantitative predictions of such an approximation are not very good, but, for 
the epidemic model described in the preceding section, since the second subrule represents 
a process that destroys the correlations created by the first subrule, if m tends to 00, the 
mean-field approximation becomes exact. 

Let S(r) and [ ( t )  denote the densities at time t of, respectively, susceptibles and 
infectives. We have 

S(t  + 1) = S ( t )  + Fi(S(t), [ ( t ) )  

= S ( t )  + (1 - S( t )  - I(t))f(bsS(t) +bi[ ( t ) )  -dsS(t) - ( 1  - 4 ) S ( t f f ( ~ l ( t ) )  

(1) 
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Z(t+ l )=Z(t)+Fz(S(f) ,I(f))  = / ( t ) + ( l - d d S ( t ) f ( p Z ( t ) ) - d j Z ( t )  (7.) 

where the function f is defined by 

f ( x ) = l - ( l - x ) 2 .  (3) 
~ 

z is the number of neighbouring vertices of a given vertex. z = 4 for the square lattice. 
The expression for f ( x )  is straightforward to derive. If x is the probability of either ‘at 
time t ,  a susceptible is infected by an infective located at a specific neighbouring site’, i.e. 
x = pZ(t); or ‘at time t ,  a susceptible or an infective gives birth to a susceptible at a 
specific neyghbouring site’, i.e. x = b,S(t) + bi/(t). then (1 - x ) ~  is the probability that 
such an event does not occur, and, fin ally,^ 1 - (1 - x)‘ is the probability that such an event 
occurs at any neighbouring site. Note that, within the framework of this approximation, the 
interaction terms are not bilinear as in most models (Bailey 1975, Walt” 1974, Anderson 

dynamic behaviour (Hethcote and van den Driessche 1991). 
~ and May 1991). Non-bilinear interactions have recently been shown to exhibit very different 

The fixed points are the solutions of the equations 

(1 - S - I ) f (b ,S  + bir) - dsS - (1 - ds)Sf(pZ) = 0 (4) 

( l -ds)Sf(pl)-di l=O. (5) 

These fixed points are stable if the absolute value of the eigenvalues A, and A2 of the 
Jacobian matrix 

are less than 1. 

two different solutions, either S = 0 or S = SO such that 

(1 - So)f(b$o) - dsSo = 0. 

Since f (0) = 0, Z = 0 is a solution of equation (5).  In this case, equation (4) can have 

(6) 

The solution (0,O) always exists. It is a stable equilibrium if -1 < hl(O, 0) < 1, i.e. 

4b5 - d, < 0. (7) 

Since 0 < dj < 1, the eigenvalue Az(0,O) = 1 - di is positive and less than 1. 

point (0,O) is unstable. The eigenvalues of J(S0,O) are 
The solution (SO, 0), which characterizes a disease-free state, exists if the trivial fixed 

 SO, 0) = I - f (bJ0)  + (1 - So)bsf’(bJo) - 4 
Az(So,O)= 1+4p(l-dJSo-di  

When (SO, 0) exists, it can be verified that Al(So, 0) is positive and less than 1. Therefore, 
(So, 0) is stable if 

4p(l  -cis)& - di < 0. (8) 
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When the disease-free state is stable, a non-zero initial density of infectives will 
eventually go to zero. If we assume that this initial density I (0)  is small, then, at t = 1, 
from equation (2) it follows that 

I ( l ) - I ( O )  =(4(1 -dJpS(O)-di)I(O)+O(I*(O)) (9) 

I.e. 

/ ( I )  - I (0 )  > 0 if S(0) > di/[4(1 - 4 ) p I  

An epidemic occurs if the initial density of the susceptible population is larger than 
a threshold value equal to di/(l - d&p (figure 1). This threshold theorem was first 
established by Kermack and McKendrick (1927) using an epidemic model formulated in 
terms of a set of three differential equations. 

h c 
'= 

0.020 

01126 

0.020 

0.016 

0.010 

0.M 

0.m 

t t 

Figure 1. Mean-field approximation. Time evolution 
of the density of infectives. I ( 0 )  = 0.01, S(0) = 0.59, 
z = 4, p = 0.3, b, = 0.051, bi = 0.001, d8 = 0.2, 
dj = 0.24 (S(0) > dL/(i - 4 ) r p )  and di = 0.61 
N O )  c dd(l - dr)zp). 

Figure 2 Time evolution of an epidemic for different 
values of m in the case of short-range moves. f(0) = 
0.01, S(0) = 0.59. p = 0.3, bs = 0.051, bi = 0.001, 
ds = 0.2. di = 0.24; 200 x 200 IattiCe. Each point 
represents the average of 20 experiments: +, m = 0; 
0, m = 5; 0,  m = 100. The broken curve corresponds 
to the mean-field approximation. 

If I # 0, equations (4) and (5) may have another solution which will be denoted 
(Sa ,  I * ) .  This fixed point characterizes an endemic state. It exists when condition (8) is 
violated, i.e. when the disease-free state is unstable, I* goes to zero at the bifurcation point 
as 4p(l - d& - di. 

The expression for the Jacobian matrix J(S*, I * )  is rather complicated and it is 
numerically easier to study the stability of this fixed point. An interesting feature of the 
model is that (S", I*) may lose its stability and a limit cycle will become stable through a 
Hopf bifurcation. 

Within the mean-field approximation (equations (l)-(Z)), our model has three 
equilibrium points and exhibits three bifurcations. 

(i) For all the values of the five parameters of the model-p, bs, bi, ds and di-the 
trivial fixed point (0,O) always exists. 
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(ii) (SO, 0). which characterizes a disease-free state, exists if, and only if, (0,O) is 
unstable. The stability of (0.0) is transferred to (SO, 0) when 46, - 4, = 0. 

(iii) (S*, I * ) ,  which characterizes an endemic state, exists if, and only if, (S0.0) is 
unstable. The transfer of stability from (SO, 0) to (S*, I * )  occurs when4p(l-ds)So-di = 0. 
This bifurcation is similar to a second-order phase transition, the role of the order parameter 
being played by the density of infectives I' which tends continuously to zero at the transition 
point. 

(iv) Finally, the system exhibits a Hopf bifurcation when (S*, Z*), which is a spiral 
node, loses its stability. A numerical study shows that, if four among the five parameters 
that characterize the model have fixed values, the stable oscillatory state is favoured if either 
p or di is increased or if bi, b, or d, is decreased. 

3. Simulations 

In our simulations, the emphasis is on the influence of motion. To discuss size effects, we 
have considered L x L lattices for values of L ranging from 100 to 1000. 

To show the general character of our model, we shall describe: 
(i) the approach of the fixed point (SO. 0) when it is stable; 
(ii) the second-order phase transition from the endemic state to the disease-free.state; 

(iii) the stable oscillatory behaviour. 
and 

3.1. The approach of (SO, 0) 

This model generalizes a simpler automata network epidemic model studied recently by 
Boccara and Cheong (1992) in which the parameters b,, 6i and dE are neglected. This 
model exhibits a similar behaviour. Figure 2 shows the influence of the parameter m on 
the time evolution of an epidemic for short-range moves. As m increases the densiq of 
infectives as a function of time tends to the mean-field result. Figure 3 shows that, to the 
precision of our measurements, size effects are negligible if L > 200. Similar results have 
been obtained for different values of m up to m = 100. 

3.2. Transition endemic state + disease-free state 

The influence of the motion of the individuals on this transition has been studied in detail 
by Boccara and Cheong (1993) in the case of a simpler automata network model in which 
only infection and recovery were taken into account. In the case of the present model we 
have studied the critical behaviour in the vicinity of the transition point as a function of 
various parameters. 

Figure 4 is a log-log plot of variation of the density of infectives I' as a function of 
df - dj when p ,  b,, bi, ds and m are held constant. For m =-0 (no moves), our model 
is a two-dimensional probabilistic cellular automaton and, as expected, we found that the 
critical exponent &, defined by 

(10) 

is equal to the value of 
As shown by Boccara and Cheong (1992, 1993), the motion of the individuals favours 

the spread of the disease. As far as the phase transition is concerned, compared with the 

for two-dimensional directed percolation (Bease 1977). 
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t In (dlo-d,) 

Figure 3. Time evolution of m epidemic for different Figurr 4. Log-log plot of I' as n function of d: - d; 
laltice sizes in the case of short-range moves: I ( 0 )  = for given values of p, b,, b, ,  ds and m. Here p = 0.01, 
0.01,S~0)=0.59,p=0.3,bs=0.051,bi=0.001, b,=0.4,bj=O.I,d,=0.3andm=O.Thecritical 
dx = 0.2, d; = 0.24, m = 5. Each point represents the value ofdi is 0.011 487 and ,6d, = 0.568i0.05. npical 
avenge of 20 experiments: x. L = 100; 0, L = 200; error bars xe represented. Lattice size is 200 x 200. 
0, L =30& 0. L =50O; C, L = 800. 

control parameters p ,  b,, bi, ds and 4, m is not really different in type, except that it changes 
the range of the interactions and, consequently, the critical exponent pmr defined by 

log I* pm = lim 
m-m,-+O+ log(m - mc) 

when p ,  b,. bi, d, and dj are held constant, will vary with m,, going from the directed 
percolation value for small mc-typically less than IO-to the mean-field value for large 
m,-i.e. larger than 100 (Boccara and Cheong 1993). Figure 5 represents a log-log plot 
of I*  as a function of m --.m,. The values of the parameters held constant are such that 
m, = 0.2028; it is, therefore, not surprising to find pm = 0.582 f 0.05, in agreement with 
the directed percolation value. 

L ~~~ slope=0.582 

A 
-%€a 

Figure 5. Log-log plot of I* as a function of in -ins 
for given values of p. bs, bi. ds and dj. Hen p = 0.9, 
b,=0.143,b;=0.0001.d~=0.001andd~=0.15. 
The critical value of m is 0.2028 nnd Bm = 0.582*0.05. 

-3.6 -3 -26 -2 Typicnl error bxs are represented. Lattice size is 

-3.76 

In (m-ma) 1000 x 1000. 
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om slope-0.51 
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0.Wl 0.m 0.01 

P-Pa m-m. 

Figureb. Log-logplotofAI asafunctionofp-p, for 
given values of b,, bi, ds, dj and m. Here b, = 0.143, 
bi = 0.0001, d, = 0.001, di = 0.15 and m = 0.2 for 
long-range moves. The critical value of p is 0.5338~and 
B," = 0.51 * 0.06. Qpiul error bars are represented. 
Lattice size is IO00 x 1000. 

Rgure7. Log-logplotofAI asarimctionofm-n, in 
the case of long-range moves, for given values of p .  4, 
bi, d, and dj. Here p = 0.9, b, = 0.143, bi = 0.0001, 
d, = 0.001, and di = 0.15. The critical value of m is 
0.M105 and p i  = 0.48 * 0.07. Typical error ban are 
represented. Lattice size i s  1OM) x 1000. 

E 
.t" 
v 

m 

0.10 - i 
0.06 ' '  ' ' I ' ' ' '  I '  " ' ' ' '  ' I '  

0 0.02 0.04~ 0.0s 0.08 0.1 

S 

Figure S. Variation of A, as a function of m, in the 
case, of long-range moves, for given values of p .  b,, bj, 
ds and di. Here p = 0.9, b, = 0.143. bi = 0.0001. 
4 = 0.001, and 4 = 0.15. Lattice size is IO00 x 1000. 

Figure 9. Variation in the size of the cycle as a function 
of m, in the case of short-range moves. for given values 
of p ,  b,, 4, ds and di. Here p = 09, b, = 0.143, 
bj = 0.0001, 4 = 0,001, and 4 = 0. IS. (a) m = 20, 
L = lOW, (b) m = 50, L = 500, (c) m = 200, 
L = 200. The full curve is the meat-field cycle. 

3.3. The stable oscillatory behaviour 

The most interesting feature of our model is the existence, after a transient depending upon 
the initial densities of susceptibles and infectives, of oscillatory behaviour for both densities 
corresponding to a stable limit cycle. This oscillatory behaviour could model, for instance, 
the periodic recurrence of high densities of infectives as occurs in certain infantile diseases. 
These oscillations are the manifestation of a collective behaviour that is still the subject 
of much controversy. In an extensive paper Chatt and Manneville (1992) studied a large 



0.05 
0 0.025 0.05 0.075 0.1 0.125 

S S 

Figure 10. Larger (b) than mean-field (a) cycle Figure 11. Variation in the size of the cycle as a 
obtained form = LOO, L = 200. Here again p = 0.9, function of m, in the case of long-range moves. for 
b,=0.143,b;=0.0001,d,=0.001,andd,=0.15. % i v e n v J l u e s o f p . b ~ , b ; . d s a n d d j .  H e r e p = 0 . 9 ,  

bs=0.143,bi=0.0001,ds=0.001,andd;=0.15. 
(3 m = 2, L = 1000, (b) m = 1, L = 1000, (c) 
tn = 0.1, L = 1000. At lhis scale, the m = 3 cycle 
(the smallest cycle) is indistinguishable from the mean- 
field cycle, 

class of cellular automaton rules for space dimensionalities ranging from two to six. Their 
results confirm the usual belief that no non-trivial collective behaviour exists for spatial 
dimensionalities less that four. In our case, oscillatory behaviour has indeed been found 
for a space dimension equal to two, but this result does not contradict the conclusion of 
Chat6 and Manneville since this collective behaviour has not been found for m = 0, i.e. for 
a standard probabilistic cellular automaton but only for a site-exchange cellular automaton. 
To observe oscillatory behaviour the m has to be greater than a minimum value-typically 
1 for short-ranges moves and 0.001 for long-range ones. 

In the vicinity of the Hopf bifurcation, we have studied the amplitude AI  of the 
oscillating density of infectives. This quantity goes continuously to zero at the bifurcation 
point. Its behaviour may be characterized by critical exponents similar to the critical 
exponents defined by (IO) and (11). We have determined the two following exponents 

As shown in figures 6 and 7, these two exponents are close to 0.5 as for a standard Hopf 
bifurcation. These results show once more that there is no fundamental difference between 
m and the other control parameters. 

As a function of m, the amplitude A I  does not vary monotonically (figure 8). The 
amplitude presents a maximum for a certain value of m close to 0.2 for long-range moves. 
The largest cycle is not obtained as m goes to CO, but for a finite non-zero value of m. This 
phenomenon is also illustrated in figures 9, 10, and 1 I which show the influence of motion 
on the cyclic behaviour. As m decreases from a rather large value (m = 200 for short-range 
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and m = 3 for long-range), the size of the cycle, in the (S, I)-plane, first increases then 
decreases and goes to zero at the bifurcation point. 

To show how the correlation is-broken as m increases, we have determined analytically 
the expression for the Hamming distance between two configurations as a function of m for 
short- and long-range moves (see appendix). These expressions show that, in particular, the 
mean-field behaviour is approached as l / m  for short-range moves and as e-" for long-range 
moves. 
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Appendix. Diffusive motion on a lattice as a mixing process 

While short-range moves are clearly diffusive moves on a two-dimensional lattice, long- 
range moves may be viewed as diffusive moves on an infinite-dimensional lattice. To 
help clarify the mixing process that results from the motion of the individuals, it might 
be worthwhile to characterize the mixing process as a function of m and the lattice 
dimensionality d. 

Consider a random initial configuration C(0) of random walkers with density c on a 
d-dimensional torus 22. Select sequentially mcN walkers at random and move them to a 
neighbouring site also selected at random if, and only if, the randomly selected neighbouring 
site is vacant. At random means that all possible choices are equally probable. N = Ld 
is the total number of sites of the torus and m, which is the average number of tentative 
moves per random walker, is a non-negative real number. Let C(mcN) denote the resulting 
configuration. 

To characterize the mixing process, we shall consider the Hamming distance 

I N  
dH(c(o), C(mcN)) = - C(n(0 ,  i) - n O " ,  j))' 

N j= l  

where n(0, j )  and n(mcN, j )  are, respectively, the occupation numbers of site j in C(0)  
and C(mcN), as a function of the density c , the parameter m and the space dimensionality 
d.  

If m is very large, C(0) and C(mcN) are decorrelated and the Hamming distance, which 
is the average value over space of 

(n(0, j )  - n(mcN, j ) ) ' =  n(0, j )  +n(mcN, j )  - 2n(0, j)n(mcN, j )  

is equal to 2c(l - c ) ,  
Since, in our simulations, the initial configurations are random, only averages over 

ail random walks and all initial configurations with a density c of random walkers are 
meaningful quantities. 

We shall prove that,  when^ N tends to 03, the average reduced Hamming distance 
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depends on m and d but not on c. 
To simplify the notation, consider a one-dimensional torus, and let P(mcN, j )  be the 

probability that the site j is occupied after mcN tentative moves-since only a fraction of 
these moves are effective. P(mcN, j )  is, therefore, the average value (n(mcN, j ) ) w  over 
all the possible random walks starting from the same initial configuration. In order to find the 
evolution equation of P(mcN, j ) ,  consider the set of configurations in which n(mcN, j -  l), 
n(mcN, j ) ,  and n(mcN, j + I) have fixed values whereas, for all i # j - 1, j ,  j + 1,  
n(mcN, i) takes any value with the restriction that the total density is equal to c. If k is 
an integer less than eight the binary representation of which is ~ 1 x 2 ~ 3 ,  let pk(mcN) denote 
the probability of a configuration such that 

n(mcN, j - 1) = x ,  n(mcN, j )  = x2 n(mcN, j + 1 )  =~x3. 

Then 

P(mcN + 1, j )  = -(pl(mcN) + p4(mcN)) + 1 
2cN 

Since 

P(mcN. j - 1) = pdmcN) + ps(mcN) + ps(mcN) + p,(mcN) 

P(mcN, j )  = pdmcN) + ps(mcN) + p6(mcN) + pdmcN) 

P(mcN, j + 1 )  = pI(mcN) + pdmcN) + ps(mcN) + pdmcN)  

we finally obtain the following discrete diffusion equation 

P(mcN + 1, j )  = P(mcN, j )  + -(P(mcN, j + 1) + P(mcN, j - 1) - 2P(mcN, j ) ) .  

(AI) 

I 
2cN 

In the case of a d-dimensional torus, we would have obtained 

P(mcN + 1, j )  = P(mcN, j )  + - ( r P ( m c N ,  i) - 2dP(mcN, j )  (A3 
2dcN i onj  

Where the summation runs over the 2d nearest-neighbours of j .  In the case of a complete 
graph, in which any pair of sites is a neighbouring site, we have 

Equation (A2) may also be written 

P(mcN + 1, j )  = P(mcN, j )  + 1 P(mcN, i) (A4) 
2dcN 
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showing that the problem of cN random walkers on a d-dimensional torus is equivalent to 
the problem of one random walker which may move to any single neighbouring site with 
probability I/ZdcN or not move with probability 1 - I /cN.  

Let us first solve equation (A3) which is much simpler. Since 

e P ( m c N , k )  = cN 
631 

(A3) may be written 

1 
( N  - 1) ' P(mcN, j )  + - c(N - 1) P ( n c N + l , j ) =  

Since (A5) involves only one site-which is typical of mean-field-type equations-its 
solution is straightforward. We find 

P(mcN, j ) =  1 -  rN (n(0, j )  - c)  + c. (A@ ( c(N - 1) 

Averaging over all random walks starting from the same initial configuration C(0) = 
(n(0, j ) ]  j = 1,2,  . . . , NI,  the Hamming distance is 

l N  
N j = l  

dH(c(o), C(mcN))  = - CMO, j )  + P(mcN, j )  - W O ,  j ) ~ ( m c ~ ,  j ) )  

i.e. 

l N  
N j=1 

dH(C(0). C(mcN))  = 2c - 2- Cn(0, j ) P ( m c N ,  j ) .  

Replacing P(mcN,  j )  by its expression, we have 

and, taking the average over space, we obtain 

where ( f ( j ) ) s p  denotes the average over the space of f ( j ) .  
(n(0, j))sp = c, letting N go to 00, we finally obtain (2c - 2cz)(1 - eCm), i.e. 

Since ((n(0, j))2)sp = 

6 = 1 -ee-'". 
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Consider now equation (Al), and define the Fourier transform of P(mcN,  j ) .  We have 

1 N -  
P ( m c N ,  j )  = -~c P(mcN,  k)e'"*j". 

f i  k=l 

Replacing this in (Al) yields 

F ( m c N + l , k ) =  ( l - L s i n 2 ( $ ) )  cN F ( m c N , k )  

and, therefore, 

The average Hamming distance over all initial configurations is 
. U  

where ( f ( j ) ) i c  denotes the average over all initial configurations of f ( j ) .  Since 

we find 

l N  - c ( P ( 0 ,  k)P(O, -k))ic 
k=I 

Finally, in the limit N + CO, the average Hamming distance over all random walks and 
initial configurations is equal to 

i.e. the reduced Hamming distance 6 is equal to 

1 - e-'"Io(m) 

where fo, which is given by 

is the modified Bessel function of the first kind of order zero. Since, for large values of its 
argument, l o  behaves as e'n/&, 6 approaches the unity, as.m tends to CO, as l/J;;. 

Equation (A2) could be solved in a similar wa and, in particular, we would find that 
6 approaches the unity, as m tends to CO, as 1/ /-. md 

For small m, it is easy to verify that, for all d, 6 behaves as~m. 
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